SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sciaraffa N, Di Flumeri G, Germano D, Giorgi A, Di Florio A, Borghini G, Vozzi A, Ronca V, Varga R, van Gasteren M, Babiloni F, Aricò P. Brain Sci. 2022; 12(3): e304.

Copyright

(Copyright © 2022, Switzerland Molecular Diversity Preservation International (MDPI) AG)

DOI

10.3390/brainsci12030304

PMID

35326261

Abstract

Driver's stress affects decision-making and the probability of risk occurrence, and it is therefore a key factor in road safety. This suggests the need for continuous stress monitoring. This work aims at validating a stress neurophysiological measure-a Neurometric-for out-of-the-lab use obtained from lightweight EEG relying on two wet sensors, in real-time, and without calibration. The Neurometric was tested during a multitasking experiment and validated with a realistic driving simulator. Twenty subjects participated in the experiment, and the resulting stress Neurometric was compared with the Random Forest (RF) model, calibrated by using EEG features and both intra-subject and cross-task approaches. The Neurometric was also compared with a measure based on skin conductance level (SCL), representing one of the physiological parameters investigated in the literature mostly correlated with stress variations. We found that during both multitasking and realistic driving experiments, the Neurometric was able to discriminate between low and high levels of stress with an average Area Under Curve (AUC) value higher than 0.9. Furthermore, the stress Neurometric showed higher AUC and stability than both the SCL measure and the RF calibrated with a cross-task approach. In conclusion, the Neurometric proposed in this work proved to be suitable for out-of-the-lab monitoring of stress levels.


Language: en

Keywords

stress; driving; EEG; random forest; wet EEG sensors

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print