SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mostafiz RB, Friedland CJ, Rohli RV, Bushra N. Climate (Basel) 2022; 10(4): e49.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/cli10040049

PMID

unavailable

Abstract

Wildfire is an important but understudied natural hazard in some areas. This research examined historical and future wildfire property risk at the census-block level in Louisiana, a U.S.A. state with relatively dense population and substantial vulnerability to loss from wildfire, despite its wet climate. Here wildfire risk is defined as the product of exposure and vulnerability to the hazard, where exposure is a function of the historical and anticipated future wildfire frequency/extent, and vulnerability is a function of population, structure and content property value, damage probability, and percent of properties damaged. The results revealed a historical (1992-2015) average annual statewide property loss due to wildfire of almost USD 5.6 million (in 2010 USD), with the greatest risk in southwestern inland, east-central, extreme northwestern, and coastal southwestern Louisiana. The geographic distribution of wildfire risk by 2050 will remain similar to that today, but the magnitude of losses was projected to increase statewide to over USD 11 million by 2050 (in 2010 USD), an increase of more than 100% over 2010 values. These estimates are conservative, as they did not include crop, forestry, or indirect losses (e.g., cost of evacuation and missed time at work). Overall, results suggested that increased efforts are needed to contain wildfires, to reduce the future risk of this increasing and underestimated hazard.


Language: en

Keywords

burn probability; climate change; environmental change; forest resources; natural hazards; population projections; resilience; vulnerability; wildfire

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print