SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu Y, Qin J, Wu T, Liu B, Xia Y. Comput. Intell. Neurosci. 2022; 2022: e9559170.

Copyright

(Copyright © 2022, Hindawi Publishing)

DOI

10.1155/2022/9559170

PMID

35281184

PMCID

PMC8906935

Abstract

Tourism and transportation generally have an inseparable association. However, there are still many limitations in the existing research on it. For example, most scholars only adopt one single model method, which fails to consider geospatial elements. Moreover, some researchers simply use socioeconomic data for analysis and research and ignore the solid spatial characteristics between tourism and transportation, which leads to deviations in the results. To solve these problems, this article proposed a spatiotemporal association model by comprehensively using coupling coordination degree, gravity center model, and spatial coincidence degree. Based on the tourism economic and attraction spatial data, and the transportation and its network spatial data, the association between tourism and transportation can be revealed by the proposed model. This study conducted a quantitative analysis on the tourism and transportation industry in Jiangxi Province, China, from 2005 to 2019, and the results show that: (1) the coupling coordination degree of tourism and transportation increases year by year; (2) the change in gravity center of tourism and transportation is subtle. The mean value of spatial overlap is 80.33 km, while the mean value of inter-annual variation consistency is 0.56; (3) the spatial coincidence degree of tourism and transportation in Jiangxi Province indicates a steady upward trend and reaches 0.78 in 2019; and (4) based on the evolution trend in the coupling coordination degree, gravity center coupling model, and spatial coincidence degree of tourism and transportation, it can be seen that the slopes of their trend functions are similar and consistent-the slopes are 0.0239, 0.0253, and 0.0319, respectively-and the standard deviation of the slopes of the three is only 0.000018.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print