SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chandrashekar C, Agrawal P, Chatterjee P, Pawar DS. IATSS Res. 2021; 45(4): 551-560.

Copyright

(Copyright © 2021, International Association of Traffic and Safety Sciences, Publisher Elsevier Publishing)

DOI

10.1016/j.iatssr.2021.07.001

PMID

unavailable

Abstract

In India, auto rickshaws are the most convenient and cheapest mode of near-to-door transport in both rural and urban areas. Such vehicles powered with internal combustion engines (ICEs) are one of the main sources of pollutants on urban corridors. One way to minimize tail-pipe emissions is to use electric motors in place of ICE. To evaluate the vehicle performance, energy consumption, driving behavior, optimal design and management of such electric vehicles, driving cycle is an important tool. So far, only limited studies exist on the development of a driving cycle for e-rickshaw. Moreover, these studies are concentrated in urban traffic environment and research accounting rural and urban environment together remain unexplored. In this study, real world driving data for 100 trips of e-rickshaw are collected on a road stretch passing through rural and urban setting. A high-end GPS data logger was used to collect vehicle kinematics such as continuous speed profile, acceleration/deceleration, heading, and vehicle position coordinates. Nine different driving characteristics representing actual traffic conditions are identified and used for developing e-rickshaw driving cycle (ERDC). Two approaches, random selection and k-means clustering are explored to arrive at best representative ERDC using micro-trips technique. The analysis results revealed that k-means clustering outperforms the random selection method with additional benefit of accounting traffic conditions systematically. The insights from this study can be used to understand and model the performance of e-rickshaw, in terms of energy consumption and driving characteristics, compared to other fossil-fuel driven automobiles.


Language: en

Keywords

-rickshaw; Acceleration/deceleration; Driving cycle; Rural; Speed profile; Urban

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print