SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Karimi A, Razaghi R, Girkin CA, Downs JC. Injury 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.injury.2022.02.008

PMID

35144807

Abstract

BACKGROUND: Eye injuries comprise 10-13% of civilian improvised explosive device (IED) injuries. The bomb blast wave induces a normal and shear forces on the tissues, causing a large acute IOP elevation. This study calculated the biomechanical stresses and strains in the eye due to IED explosion via eye-specific fluid-structure interaction (FSI) models.

METHODS: Blast occurred at 2, 3, and 4 m from the front and side of the victim and the weights of the IED were 1 and 2 kg. The ground was covered with the deformable soil to mimic the realistic IED explosion condition and reflect the blast wave.

RESULTS: The IOP elevation of ∼6,000-48,000 mmHg was observed in the eyes while the highest IOP was occurred with the IED weight and distance of 2 kg and 2 m (front) and the lowest was occurred with the IED weight and distance of 1 kg and 4 m (side). Our findings suggest the importance of the victim location and orientation concerning the blast wave when it comes to ocular injury assessment. IOP elevation of ∼2900 and ∼2700 mmHg were observed in ∼1.6 ms after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in front and side blasts, respectively, in consistence with the literature. Nonetheless, IOPs were considerably higher after ∼1.6 ms due to the merging of the bomb blast wave and its reflection off the ground.

CONCLUSIONS: The stresses and strains were highest for the frontal blast. Both side and frontal blasts caused higher stresses and strains at the rectus muscle insertions where the sclera is thinnest and prone to rupture. Blast angle has no considerable role in the resultant IOP. Front blast with a heavier IED resulted a higher stresses and deformations in the eye connective tissues compared to the side blast.


Language: en

Keywords

Finite element method; Ground reinforcement; Improvised explosive devices; Intraocular Pressure

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print