SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

de Koning MC, Vieira Soares C, van Grol M, Bross RPT, Maurin G. ACS Appl. Mater. Interfaces 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, American Chemical Society)

DOI

10.1021/acsami.1c24295

PMID

35138813

Abstract

Novichoks are a novel class of nerve agents (also referred to as the A-series) that were employed in several poisonings over the last few years. This calls for the development of novel countermeasures that can be applied in protective concepts (e.g., protective clothing) or in decontamination methods. The Zr metal-organic framework MOF-808 has recently emerged as a promising catalyst in the hydrolysis of the V- and G-series of nerve agents as well as their simulants. In this paper, we report a detailed study of the degradation of three Novichok agents by MOF-808 in buffers with varying pH. MOF-808 is revealed to be a highly efficient and regenerable catalyst for Novichok agent hydrolysis under basic conditions. In contrast to the V- and G-series of agents, degradation of Novichoks is demonstrated to proceed in two consecutive hydrolysis steps. Initial extremely rapid P-F bond breaking is followed by MOF-catalyzed removal of the amidine group from the intermediate product. The intermediate thus acted as a competitive substrate that was rate-determining for the whole two-step degradation route. Under acidic conditions, the amidine group in Novichok A-230 is more rapidly hydrolyzed than the P-F bond, giving rise to another moderately toxic intermediate. This intermediate could in turn be efficiently hydrolyzed by MOF-808 under basic conditions. These experimental observations were corroborated by density functional theory calculations to shed light on molecular mechanisms.


Language: en

Keywords

degradation; DFT; MOF-808; Novichoks; two-step hydrolysis mechanism

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print