SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Miani M, Dunnhofer M, Micheloni C, Marini A, Baldo N. Transp. Res. Proc. 2022; 60: 432-439.

Copyright

(Copyright © 2022, Elsevier Publications)

DOI

10.1016/j.trpro.2021.12.056

PMID

unavailable

Abstract

Smart cities and smart mobility come from intelligent systems designed by humans. Artificial Intelligence (AI) is contributing significantly to the development of these systems, and the automotive industry is the most prominent example of "smart" technology entering the market: there are Advanced Driver Assistance System (ADAS), Radar/LIDAR detection units and camera-based Computer Vision systems that can assess driving conditions. Actually, these technologies have become consumer goods and services in mass-produced vehicles to provide human drivers with tools for a more comfortable and safer driving. Nevertheless, they need to be further improved for progress in the transition to fully automated driving or simply to increase vehicle automation levels. To this end, it becomes imperative to accurately predict driver's decisions, model human driving behaviors, and introduce more accurate risk assessment metrics. This paper presents a system that can learn to predict the future braking behavior of a driver in a typically urban vehicle-pedestrian conflict, i.e., when a pedestrian enters a zebra crossing from the curb and a vehicle is approaching. The algorithm proposes a sequential prediction of relevant operational indicators that continuously describe the encounter process. A car driving simulator was used to collect reliable data on braking behaviours of a cohort of 68 licensed university students, who faced the same urban scenario. The vehicle speed, steering wheel angle, and pedal activity were recorded as the participants approached the crosswalk, along with the azimuth angle of the pedestrian and the relative longitudinal distance between the vehicle and the pedestrian: the proposed system employs the vehicle information as human driving decisions and the pedestrian information as explanatory variables of the environmental state. In fact, the pedestrian's polar coordinates are usually calculated by an on-board millimeter-wave radar which is typically used to perceive the environment around a vehicle. All mentioned information is represented in the form of time series data and is used to train a recurrent neural network in a supervised machine learning process. The main purpose of this research is to define a system of behavioral profiles in non-collision conditions that could be used for enhancing the existing intelligent driving systems, e.g., to reduce the number of warnings when the driver is not on a collision course with a pedestrian. Preliminary experiments reveal the feasibility of the proposed system.


Language: en

Keywords

ADAS; Driver behaviour; Driving simulator; Gated Recurrent Units; Traffic safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print