SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun Z, Xing Y, Gu X, Chen Y. Traffic Injury Prev. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Informa - Taylor and Francis Group)

DOI

10.1080/15389588.2021.2024523

PMID

35100072

Abstract

OBJECTIVE: More attention should be given to bicycle-motor vehicle (BMV) crashes, as cyclists are at a higher risk of suffering injuries than motor vehicle users in a crash. This study aims to explore the factors influencing the injury severity of bicycle-motor vehicle (BMV) crashes in Beijing (China) and discusses the commonalities and differences between the urban and suburban areas.

METHODS: Information regarding 1,136 crashes between bicycles and motor vehicles were collected using police reported data from 2014 to 2015. A two-stage approach integrating random parameters logit (RP-logit) model and two-step clustering (TSC) algorithm was proposed to investigate the significant influence factors and their combination characteristics. Specifically, the RP-logit model was first used to identify the significant influence factors of urban and suburban areas, and then the TSC algorithm was applied to reveal the combination characteristics of significant influence factors for the fatal crashes.

RESULTS: Five factors were found to be statistically significant and had random effects on the injury severity in urban areas, i.e., type of motor vehicle, motor vehicle license ownership, type of bicycle, signal control mode and lighting condition; and seven factors were found to be statistically significant on the injury severity in suburban areas, i.e., type of motor vehicle, motor vehicle license ownership, physical isolation facility, signal control mode, weather, visibility and lighting condition. Based on TSC, the combination of significant factors showed different characteristics for fatal crashes in urban and suburban areas, in which two types of the scene including five factors should be concerned in urban areas while one type of scene containing four factors in suburban areas.

CONCLUSIONS: The results suggest that different influence factors and individual heterogeneity exist in the RP-logit model for injury severity analysis of BMV crashes in urban and suburban areas. It shows that in urban areas, heavy truck, light truck and bus significantly increase the likelihood of fatal injury than that of suburban areas. These findings can provide valuable reference information for BMV crashes response, such as heavy truck restriction, to facilitate regional safety measures for urban and suburban areas.


Language: en

Keywords

Injury severity; random parameter logit model; bicycle-motor vehicle crashes; two-step clustering algorithm; urban and suburban areas

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print