SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

He Y, Yang S, Zhou X, Lu XY. Comput. Intell. Neurosci. 2022; 2022: e3970571.

Copyright

(Copyright © 2022, Hindawi Publishing)

DOI

10.1155/2022/3970571

PMID

35103055

PMCID

PMC8800608

Abstract

More than 50% major road accidents are caused by risk driving behaviors from professional drivers of Heavy Duty Vehicles (HDVs). The quantitative estimation of driving performance and driving behaviors portrait for professional drivers is helpful to measure the driver's driving risk and inherent driving style. Previous studies have attempted to evaluate risk driving behavior, but most of them rely on high-demand vehicle and driving data. However, few studies can dig into the causes and correlations behind individual driving behavior and quantify the driving behaviors portrait for professional driver based on long-term naturalistic driving. In this study, the data is from On-Board Unit (OBU) devices mounted in the HDVs in China. Based on the driving behavior pattern diagram and the frequency and ranking of drivers' typical driving patterns, a driving behavior portrait approach is proposed by comprehensively considering the vehicle safety, driving comfort, and fuel economy indicators. The similarities and differences of different drivers' driving behaviors are quantitatively analyzed. The high precision and sampling frequency data from vehicles are used to verify the proposed approach. The results demonstrated that the driving behavior portrait approach can digitally describe the individual driving behaviors styles and identify the potential driving behaviors with long-term naturalistic driving data. The development of this approach can help quantitatively evaluate the individual characteristic of risk driving behaviors to prevent road accidents.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print