SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Steuer NB, Schlanstein PC, Hannig A, Sibirtsev S, Jupke A, Schmitz-Rode T, Kopp R, Steinseifer U, Wagner G, Arens J. Membranes (Basel) 2022; 12(1): e56.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/membranes12010056

PMID

35054581

Abstract

Carbon monoxide (CO) poisoning is the leading cause of poisoning-related deaths globally. The currently available therapy options are normobaric oxygen (NBO) and hyperbaric oxygen (HBO). While NBO lacks in efficacy, HBO is not available in all areas and countries. We present a novel method, extracorporeal hyperoxygenation therapy (EHT), for the treatment of CO poisoning that eliminates the CO by treating blood extracorporeally at elevated oxygen partial pressure. In this study, we proof the principle of the method in vitro using procine blood: Firstly, we investigated the difference in the CO elimination of a hollow fibre membrane oxygenator and a specifically designed batch oxygenator based on the bubble oxygenator principle at elevated pressures (1, 3 bar). Secondly, the batch oxygenator was redesigned and tested for a broader range of pressures (1, 3, 5, 7 bar) and temperatures (23, 30, 37 °C). So far, the shortest measured carboxyhemoglobin half-life in the blood was 21.32 min. In conclusion, EHT has the potential to provide an easily available and effective method for the treatment of CO poisoning.


Language: en

Keywords

poisoning; bubble oxygenator; carbon monoxide; extracorporeal therapy; hollow fibre membrane oxygenator; hyperoxygenation; oxygenator

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print