SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huber CM, Patton DA, Margulies S, Master C, Arbogast K. Neurology 2022; 98(Suppl 1): S13-S14.

Copyright

(Copyright © 2022, Lippincott Williams and Wilkins)

DOI

10.1212/01.wnl.0000801856.45976.d2

PMID

34969904

Abstract

OBJECTIVE: To quantify the head impact biomechanics, by impact mechanism, of female high school lacrosse players during games using an instrumented mouthguard.

BACKGROUND: There is growing concern for the neurologic effects of repetitive head impacts in sports, which have been linked with several short-term neurophysiologic deficits. Girls' lacrosse represents a popular but understudied sport with regard to head impact exposure and current debate exists as to the need for enhanced protective equipment. DESIGN/METHODS: A female high school varsity lacrosse team wore the Stanford Instrumented Mouthguard during competitive games for the 2019 season. Video footage was reviewed to confirm head impact events and remove false-positive recordings. For each impact event, the mechanism was coded as stick contact, player contact, fall, or ball contact. Head impact rates were calculated per athlete exposure (AE, defined as a single player participating in a single game).

RESULTS: Sensor data were recorded for 15 female varsity lacrosse players for 14 games and 97 AEs. During games, 31 sensor-recorded head impacts were video-confirmed resulting in a pooled average head impact rate of 0.32 impacts/AE. The video-confirmed impacts were distributed between stick contact (17, 54.8%), player contact (12, 38.7%), and falls (2, 6.5%). There were no ball impacts. Overall peak kinematics were 34.0 ± 26.6 g, 12.0 ± 9.1 rad/s, and 3,666.5 ± 2,987.6 rad/s2. Stick contacts had the highest peak linear acceleration (42.7 ± 32.2 g), angular velocity (14.5 ± 11.1 rad/s), and angular acceleration (4,242.4 ± 3,634.9 rad/s2).

CONCLUSIONS: Stick impacts were the most common impact mechanism and resulted in the highest peak linear and angular kinematics, which may help explain why they are the most common cause of head injury in female lacrosse. By quantifying the head impact exposure, kinematics and mechanisms in female high school lacrosse, targeted injury preventions can be developed, such as rule changes and protective equipment.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print