SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Fan C, Yang L, Luan D, Chen T, Jiao A, Ouyang R, Wang J, Chen C. Transp. Saf. Environ. 2021; 3(4): tdab023.

Copyright

(Copyright © 2021, Oxford University Press)

DOI

10.1093/tse/tdab023

PMID

unavailable

Abstract

Experiments were conducted in a 1:20 arced tunnel model to investigate the effect of canyon cross wind on buoyancy-induced smoke flow characteristics of pool fires, involving smoke movement behaviour and longitudinal temperature distribution of smoke layer. The canyon wind speed, longitudinal fire location and fire size were varied.

RESULTS show that there are two special smoke behaviours with the fire source positioned at different flow field zones. When the fire source is positioned at the negative pressure zone, with increasing canyon wind speed, the smoke always exists upstream mainly due to the vortex, and the smoke temperature near the fire source increases first and then decreases. However, when the fire source is located in the transition zone and the unidirectional flow zone, there is no smoke appearing upstream with a certain canyon wind speed. Meanwhile, the smoke temperature near the fire sources are decreases with increasing canyon wind speed. The dimensionless temperature rise of the smoke layer ΔTs* along the longitudinal direction of the tunnel follows a good exponential decay. As the canyon wind speed increases, the longitudinal decay rate of ΔTs* decreases. The longitudinal decay rate of ΔTs* downstream of the fire is related to the fire location and canyon wind speed, and independent of the fire size. The empirical correlations for predicting the longitudinal decay of ΔTs* downstream of the fire are established. For a relatively large-scale fire, the longitudinal decay rate of ΔTs* upstream of the fire increases as the distance between the fire source and the upstream portal increases, especially for larger canyon wind speeds.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print