SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ezerins ME, Ludwig TD, O'Neil T, Foreman AM, Açıkgöz Y. Safety Sci. 2022; 146: e105569.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.ssci.2021.105569

PMID

unavailable

Abstract

Big data and analytics have shown promise in predicting safety incidents and identifying preventative measures directed towards specific risk variables. However, the safety industry is lagging in big data utilization due to various obstacles, which may include lack of data readiness (e.g., disparate databases, missing data, low validity) and personnel competencies. This paper provides a primer on the application of big data to safety. We then describe a safety analytics readiness assessment framework that highlights system requirements and the challenges that safety professionals may encounter in meeting these requirements. The proposed framework suggests that safety analytics readiness depends on (a) the quality of the data available, (b) organizational norms around data collection, scaling, and nomenclature, (c) foundational infrastructure, including technological platforms and skills required for data collection, storage, and analysis of health and safety metrics, and (d) measurement culture, or the emergent social patterns between employees, data acquisition, and analytic processes. A safety-analytics readiness assessment can assist organizations with understanding current capabilities so measurement systems can be matured to accommodate more advanced analytics for the ultimate purpose of improving decisions that mitigate injury and incidents.


Language: en

Keywords

Data analytics; Occupational health; Readiness assessment; Safety analytics

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print