SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Khalid Khan S, Shiwakoti N, Stasinopoulos P. Accid. Anal. Prev. 2021; 165: e106515.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106515

PMID

34890922

Abstract

Emerging Connected and Autonomous Vehicles (CAVs) technology have a ubiquitous communication framework. It poses security challenges in the form of cyber-attacks, prompting rigorous cybersecurity measures. There is a lack of knowledge on the anticipated cause-effect relationships and mechanisms of CAVs cybersecurity and the possible system behaviour, especially the unintended consequences. Therefore, this study aims to develop a conceptual System Dynamics (SD) model to analyse cybersecurity in the complex, uncertain deployment of CAVs. Specifically, the SD model integrates six critical avenues and maps their respective parameters that either trigger or mitigate cyber-attacks in the operation of CAVs using a systematic theoretical approach. These six avenues are: i) CAVs communication framework, ii) secured physical access, iii) human factors, iv) CAVs penetration, v) regulatory laws and policy framework, and iv) trust-across the CAVs-industry and among the public. Based on the conceptual model, various system archetypes are analysed. "Fixes that Fail", in which the upsurge in hacker capability is the unintended natural result of technology maturity, requires continuous efforts to combat it. The primary mitigation steps are human behaviour analysis, knowledge of motivations and characteristics of CAVs cyber-attackers, CAVs users and Original Equipment Manufacturers education. "Shifting the burden", where policymakers counter the perceived cyber threats of hackers by updating legislation that also reduces CAVs adaptation by imitations, indicated the need for calculated regulatory and policy intervention. The "limits to success" triggered by CAVs penetration increase the defended hacks to establish regulatory laws, improve trust, and develop more human analysis. However, it may also open up caveats for cyber-crimes and alert that CAVs deployment to be alignment with the intended goals for enhancing cybersecurity. The proposed model can support decision-making and training and stimulate the roadmap towards an optimized, self-regulating, and resilient cyber-safe CAV system.


Language: en

Keywords

Risk assessment; Governance; Privacy; V2X; Cyber-safety; Driverless cars; Intelligent transportation system; Smart mobility

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print