SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Niroomand N, Bach C, Elser M. Transp. Res. Rec. 2021; 2675(10): 184-194.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981211010795

PMID

unavailable

Abstract

There has been globally continuous growth in passenger car sizes and types over the past few decades. To assess the development of vehicular specifications in this context and to evaluate changes in powertrain technologies depending on surrounding frame conditions, such as charging stations and vehicle taxation policy, we need a detailed understanding of the vehicle fleet composition. This paper aims therefore to introduce a novel mathematical approach to segment passenger vehicles based on dimensions features using a means fuzzy clustering algorithm, Fuzzy C-means (FCM), and a non-fuzzy clustering algorithm, K-means (KM). We analyze the performance of the proposed algorithms and compare them with Swiss expert segmentation. Experiments on the real data sets demonstrate that the FCM classifier has better correlation with the expert segmentation than KM. Furthermore, the outputs from FCM with five clusters show that the proposed algorithm has a superior performance for accurate vehicle categorization because of its capacity to recognize and consolidate dimension attributes from the unsupervised data set. Its performance in categorizing vehicles was promising with an average accuracy rate of 79% and an average positive predictive value of 75%.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print