SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang Y, Yu P. Sensors (Basel) 2021; 21(21): e7279.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21217279

PMID

34770584

Abstract

The efficiency and the effectiveness of railway intrusion detection are crucial to the safety of railway transportation. Most current methods of railway intrusion detection or obstacle detection are inappropriate for large-scale applications due to their high cost or limited coverage. In this study, we present a fast and low-cost solution to intrusion detection of high-speed railways. As the solution to heavy computational burdens in the current convolutional-neural-network-based detection methods, the proposed method is mainly a novel neural network based on the SSD framework, which includes a feature extractor using an improved MobileNet and a lightweight and efficient feature fusion module. In addition, aiming to improve the detection accuracy of small objects, the feature map weights are introduced through convolution operation to fuse features at different scales. TensorRT is employed to optimize and deploy the proposed network in the low-cost embedded GPU platform, NVIDIA Jetson TX2, to enhance the efficiency. The experimental results show that the proposed methods achieved 89% mAP on the railway intrusion detection dataset, and the average processing time for a single frame was 38.6 ms on the Jetson TX2 module, which satisfies the need of real-time processing.


Language: en

Keywords

embedded GPU; feature fusion module; improved MobileNet; intrusion detection; SSD

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print