SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhu T, Zhu Z, Zhang J, Yang C. Int. J. Environ. Res. Public Health 2021; 18(21): e11131.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph182111131

PMID

34769650

Abstract

Accidents involving electric bicycles, a popular means of transportation in China during peak traffic periods, have increased. However, studies have seldom attempted to detect the unique crash consequences during this period. This study aims to explore the factors influencing injury severity in electric bicyclists during peak traffic periods and provide recommendations to help devise specific management strategies. The random-parameters logit or mixed logit model is used to identify the relationship between different factors and injury severity. The injury severity is divided into four categories. The analysis uses automobile and electric bicycle crash data of Xi'an, China, between 2014 and 2019. During the peak traffic periods, the impact of low visibility significantly varies with factors such as areas with traffic control or without streetlights. Furthermore, compared with traveling in a straight line, three different turnings before the crash reduce the likelihood of severe injuries. Roadside protection trees are the most crucial measure guaranteeing riders' safety during peak traffic periods. This study reveals the direction, magnitude, and randomness of factors that contribute to electric bicycle crashes. The results can help safety authorities devise targeted transportation safety management and planning strategies for peak traffic periods.


Language: en

Keywords

injury severity; electric bicycle crashes; heterogeneity in means and variances; mixed logit model; visibility

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print