SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ward R, Weeda E, Taber DJ, Axon RN, Gebregziabher M. Health Serv. Outcomes Res. Methodol. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Kluwer Academic Publishers)

DOI

10.1007/s10742-021-00263-7

PMID

34744496

PMCID

PMC8561350

Abstract

Veterans suffer disproportionate health impacts from the opioid epidemic, including overdose, suicide, and death. Prediction models based on electronic medical record data can be powerful tools for identifying patients at greatest risk of such outcomes. The Veterans Health Administration implemented the Stratification Tool for Opioid Risk Mitigation (STORM) in 2018. In this study we propose changes to the original STORM model and propose alternative models that improve risk prediction performance. The best of these proposed models uses a multivariate generalized linear mixed modeling (mGLMM) approach to produce separate predictions for overdose and suicide-related events (SRE) rather than a single prediction for combined outcomes. Further improvements include incorporation of additional data sources and new predictor variables in a longitudinal setting. Compared to a modified version of the STORM model with the same outcome, predictor and interaction terms, our proposed model has a significantly better prediction performance in terms of AUC (84% vs. 77%) and sensitivity (71% vs. 66%). The mGLMM performed particularly well in identifying patients at risk for SREs, where 72% of actual events were accurately predicted among patients with the 100,000 highest risk scores compared with 49.7% for the modified STORM model. The mGLMM's strong performance in identifying true cases (sensitivity) among this highest risk group was the most important improvement given the model's primary purpose for accurately identifying patients at most risk for adverse outcomes such that they are prioritized to receive risk mitigation interventions. Some predictors in the proposed model have markedly different associations with overdose and suicide risks, which will allow clinicians to better target interventions to the most relevant risks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10742-021-00263-7.


Language: en

Keywords

Decision support; Opioid epidemic; Opioid safety; Risk prediction model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print