SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kim B, Heaslip KP, Aad MA, Fuentes A, Goodall N. Transp. Res. Rec. 2021; 2675(9): 870-884.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981211004979

PMID

unavailable

Abstract

This study assesses the impact of the introduction of connected and automated vehicles on Virginia freeway corridors. Three vehicle types: legacy vehicles (LV), automated vehicles (AV), and connected automated vehicles (CAV), were considered in mixed traffic scenarios. Previous relevant studies were reviewed and the proper operating parameters for LV, AV, and CAV identified. AV and CAV driving behavior models were developed in the VISSIM environment. According to the basic freeway test network results, AV and CAV increase road capacity by 29% and 91%. In the merging freeway test network, AV and CAV increase road capacity by 48% and 60% compared with LV, respectively. A model with diverse LV, AV, and CAV market penetration and diverse traffic demand was tested on I-95 in Virginia, where the research team tested the speed and throughput. Under the current traffic demand, the average speed was higher when there were more AV and no CAV in the traffic flow. However, the average speed of CAV in a congested segment is higher than LV. In the case of throughput, CAV shows poor performance under current traffic demand. With increased traffic demand, high penetrations of AV and CAV present better performance because of their short headway and homogeneity. Therefore, the study predicts that in the future, as the traffic demand grows, AV and CAV can reduce traffic congestion.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print