SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ravi R, Bullock D, Habib A. Transp. Res. Rec. 2021; 2675(9): 428-438.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981211002529

PMID

unavailable

Abstract

Regular pavement monitoring over highways and airport runways is vital for public agencies to ensure the safe riding of vehicles and aircrafts. Highways are mostly subject to cracking and potholes along with a few instances of debris around construction work zones. Airports are also concerned with debris but have much lower tolerance for the presence of foreign object debris (FOD) that could possibly damage the aircraft. LiDAR is rapidly emerging in a variety of mobile mapping systems (MMS) and will likely be integrated into many transportation vehicles over the next decade for pavement inspection. This paper proposes a unique algorithm for pavement surface inspection with the help of MMS driven at highway speeds. The study analyzed LiDAR data acquired for 8 mi of highway collected at approximately 55 to 60 mph. This study indicates that an adequately designed MMS along with the proposed algorithm can efficiently detect pavement anomalies as small as 2 cm in the form of cracking, potholes, surface debris, or any combination of these. This is more than sufficient for highways, where debris such as ladders and tires are an order of magnitude larger. For evaluating the effectiveness of detecting smaller airport FOD, a validation dataset was created by driving the MMS at 15 mph adjacent to a debris field of 50 sample pieces of FOD collected from an airport. The study found that 100% of the FOD items larger than 2 cm in size (12 out of 50 samples) were detected successfully at 15 mph. Both datasets suggest that MMS LiDAR is sufficient for pavement inspection and as sensor fidelity increases, even small FOD will be able to be detected with the algorithm proposed in this paper.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print