SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tzouvaras M. Sensors (Basel) 2021; 21(20): e6799.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21206799

PMID

34696012

Abstract

Landslides are one of the most destructive natural hazards worldwide, affecting greatly built-up areas and critical infrastructure, causing loss of human lives, injuries, destruction of properties, and disturbance in everyday commute. Traditionally, landslides are monitored through time consuming and costly in situ geotechnical investigations and a wide range of conventional means, such as inclinometers and boreholes. Earth Observation and the exploitation of the freely available Copernicus datasets, and especially Sentinel-1 Synthetic Aperture Radar (SAR) images, can assist in the systematic monitoring of landslides, irrespective of weather conditions and time of day, overcoming the restrictions arising from in situ measurements. In the present study, a comprehensive statistical analysis of coherence obtained through processing of a time-series of Sentinel-1 SAR imagery was carried out to investigate and detect early indications of a landslide that took place in Cyprus on 15 February 2019. The application of the proposed methodology led to the detection of a sudden coherence loss prior to the landslide occurrence that can be used as input to Early Warning Systems, giving valuable on-time information about an upcoming landslide to emergency response authorities and the public, saving numerous lives. The statistical significance of the results was tested using Analysis of Variance (ANOVA) tests and two-tailed t-tests.


Language: en

Keywords

Copernicus; critical infrastructure resilience; early warning; landslides; SAR

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print