SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao J, Fang J, Wang S, Wang K, Liu C, Han T. Sensors (Basel) 2021; 21(20): e6777.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21206777

PMID

34695990

Abstract

The existing ultrasonic obstacle avoidance robot only uses an ultrasonic sensor in the process of obstacle avoidance, which can only be avoided according to the fixed obstacle avoidance route. Obstacle avoidance cannot follow additional information. At the same time, existing robots rarely involve the obstacle avoidance strategy of avoiding pits. In this study, on the basis of ultrasonic sensor obstacle avoidance, visual information is added so the robot in the process of obstacle avoidance can refer to the direction indicated by road signs to avoid obstacles, at the same time, the study added an infrared ranging sensor, so the robot can avoid potholes. Aiming at this situation, this paper proposes an intelligent obstacle avoidance design of an autonomous mobile robot based on a multi-sensor in a multi-obstruction environment. A CascadeClassifier is used to train positive and negative samples for road signs with similar color and shape. A multi-sensor information fusion is used for path planning and the obstacle avoidance logic of the intelligent robot is designed to realize autonomous obstacle avoidance. The infrared sensor is used to obtain the environmental information of the ground depression on the wheel path, the ultrasonic sensor is used to obtain the distance information of the surrounding obstacles and road signs, and the information of the road signs obtained by the camera is processed by the computer and transmitted to the main controller. The environment information obtained is processed by the microprocessor and the control command is output to the execution unit. The feasibility of the design is verified by analyzing the distance acquired by the ultrasonic sensor, infrared distance measuring sensors, and the model obtained by training the sample of the road sign, as well as by experiments in the complex environment constructed manually.


Language: en

Keywords

Adaboost; intelligent robot; multi sensor; object detection; obstacle avoidance

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print