SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun Z, Xing Y, Wang J, Gu X, Lu H, Chen Y. J. Transp. Saf. Secur. 2022; 14(11): 1838-1864.

Copyright

(Copyright © 2022, Southeastern Transportation Center, and Beijing Jiaotong University, Publisher Informa - Taylor and Francis Group)

DOI

10.1080/19439962.2021.1971814

PMID

unavailable

Abstract

Bicycle-motor vehicle (BMV) crashes have been identified as a major type of traffic accident affecting transportation safety. In order to determine the characteristics of BMV crashes in cold regions, this study presents an analysis using police-reported data from 2015 to 2017 on BMV crashes in Shenyang, China. A two-stage approach integrating latent class analysis (LCA) and the random parameter logit (RP-logit) model is proposed to identify specific crash groups and explore their contributing factors. First, LCA was used to classify data into several homogenous clusters, and then the RP-logit model was established to identify significant factors in the whole data model and the cluster-based model from LCA. The proposed two-stage approach can maximize the heterogeneity effects both among clusters and within clusters.

RESULTS show that three significant factors in the cluster-based model are obscured by the whole data model in which male cyclists are associated with a higher risk of fatality, especially in the winter. Additionally, differences exist in the exploration of factors due to the characteristics of clusters; thus, countermeasures for specific crash groups should be implemented. This research can provide references for regulators to develop targeted policies and reduce injury severity in BMV crashes in cold regions.


Language: en

Keywords

bicycle–motor vehicle crashes; injury severity; latent class analysis; random parameter logit model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print