SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang J, Li J, Wang W. Sensors (Basel) 2021; 21(19): e6511.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21196511

PMID

34640830

Abstract

Falling represents one of the most serious health risks for elderly people; it may cause irreversible injuries if the individual cannot obtain timely treatment after the fall happens. Therefore, timely and accurate fall detection algorithm research is extremely important. Recently, a number of researchers have focused on fall detection and made many achievements, and most of the relevant algorithm studies are based on ideal class-balanced datasets. However, in real-life applications, the possibilities of Activities of Daily Life (ADL) and fall events are different, so the data collected by wearable sensors suffers from class imbalance. The previously developed algorithms perform poorly on class-imbalanced data. In order to solve this problem, this paper proposes an algorithm that can effectively distinguish falls from a large amount of ADL signals. Compared with the state-of-the-art fall detection algorithms, the proposed method can achieve the highest score in multiple evaluation methods, with a sensitivity of 99.33%, a specificity of 91.86%, an F-Score of 98.44% and an AUC of 98.35%. The results prove that the proposed algorithm is effective on class-imbalanced data and more suitable for real-life application compared to previous works.


Language: en

Keywords

deep learning; class imbalance; fall detection; wearable sensor

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print