SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu D, Xu X, Xu W, Zhu B. Sensors (Basel) 2021; 21(19): e6402.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21196402

PMID

34640721

Abstract

Traffic speed prediction plays an important role in intelligent transportation systems, and many approaches have been proposed over recent decades. In recent years, methods using graph convolutional networks (GCNs) have been more promising, which can extract the spatiality of traffic networks and achieve a better prediction performance than others. However, these methods only use inaccurate historical data of traffic speed to forecast, which decreases the prediction accuracy to a certain degree. Moreover, they ignore the influence of dynamic traffic on spatial relationships and merely consider the static spatial dependency. In this paper, we present a novel graph convolutional network model called FSTGCN to solve these problems, where the model adopts the full convolutional structure and avoids repeated iterations. Specifically, because traffic flow has a mapping relationship with traffic speed and its values are more exact, we fused historical traffic flow data into the forecasting model in order to reduce the prediction error. Meanwhile, we analyzed the covariance relationship of the traffic flow between road segments and designed the dynamic adjacency matrix, which can capture the dynamic spatial correlation of the traffic network. Lastly, we conducted experiments on two real-world datasets and prove that our model can outperform state-of-the-art traffic speed prediction.


Language: en

Keywords

intelligent transportation; spatial–temporal correlation; traffic flow; traffic speed prediction

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print