SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang KL, Li SJ, Zhu PH. Materials (Basel) 2021; 14(19): e5782.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ma14195782

PMID

34640179

Abstract

In this paper, the effect of early curing temperature on the tunnel fire resistance of self-compacting concrete (SCC) coated with aerogel cement paste (ACP) was studied. The physical properties in terms of the compressive strength, flexural strength, and thermal conductivity of ACP were tested under different early curing temperatures. The tunnel fire resistance of ACP and SCC coated with ACP was determined, and the microstructure of ACP and SCC after a tunnel fire were characterized by scanning electron microscopy. The results show that the strength of ACP initially increased (by 10-40 °C) and then later decreased (by 40-60 °C) with the increase in early curing temperature. ACP under 40 °C early curing exhibited the minimum number of cracks and mass loss after the tunnel fire. Too high or too low early curing temperature reduced the thermal conductivity of ACP but accelerated the formation and expansion of microcracks during the tunnel fire. The residual compressive strength of SCC coated with ACP under 40 °C early curing after the tunnel fire was the highest, demonstrating the best tunnel fire resistance.


Language: en

Keywords

aerogel cement paste; early curing temperature; self-compacting concrete; tunnel fire resistance

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print