SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Das S, Datta S, Zubaidi HA, Obaid IA. IATSS Res. 2021; 45(3): 310-316.

Copyright

(Copyright © 2021, International Association of Traffic and Safety Sciences, Publisher Elsevier Publishing)

DOI

10.1016/j.iatssr.2021.01.001

PMID

unavailable

Abstract

In spite of enormous improvements in vehicle safety, roadway design, and operations, there is still an excessive amount of traffic crashes resulting in injuries and major productivity losses. Despite the many studies on factors of crash frequency and injury severity, there is still further research to be conducted. Tree and utility pole/other pole related (TUOP) crashes present approximately 12 to 15% of all roadway departure (RwD) fatal crashes in the U.S. The count of TUOP crashes comprise nearly 22% of all fatal crashes in Louisiana. From 2010 to 2016, there were 55,857 TUOP crashes reported in Louisiana. Individually examining each of these crash reports is not a realistic option to investigate crash factors. Therefore, this study employed text mining and interpretable machine learning (IML) techniques to analyze all TUOP crashes (with available crash narratives) that occurred in Louisiana from 2010 to 2016. This study has two major goals: 1) to develop a framework for applying machine learning models to classify injury levels from unstructured textual content, and 2) to apply an IML framework that provides probability measures of keywords and their association with the injury classification. The present study employed three machine learning algorithms in the classification of injury levels based on the crash narrative data. Of the used modeling techniques, the eXtreme gradient boosting (XGBoost) model shows better performance, with accuracy ranging from 0.70 to 24% for the training data and from 0.30% to 16% for the test data.


Language: en

Keywords

Crash narratives; Explanation; Interpretable machine learning; Misclassification; Text mining; TUOP crashes

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print