SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li Y, Li M, Yuan J, Lu J, Abdel-Aty M. Accid. Anal. Prev. 2021; 162: e106422.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106422

PMID

34607246

Abstract

The automated enforcement system (AES) is an effective way of supplementing traditional traffic enforcement, and the traffic violation data from AES can also be effectively used for safety research. In this study, traffic violation data were used to analyze the influencing factors associated with traffic violations and to predict the probability of violations at intersections. The potential factors influencing violations include 24 independent factors related to time, space, traffic and weather.

RESULTS from a logistic model showed that the midday period, weekends, residential districts, collector roads, congested traffic conditions, high traffic flow, lower wind speed and low temperature would increase the probability of traffic violations. The probability of violations was predicted by the random forest algorithm, which was proven to be the best traffic violation prediction model among logistic regression, Gaussian naive Bayes, and support vector machine. Moreover, the proximity weighted synthetic oversampling technique (ProWSyn) method was applied to reduce the impact of the imbalance ratio (IR) and improve the model's prediction performance. The receiver operating characteristics (ROC) curves and Precision-Recall (PR) curves illustrated that the random forest algorithm using oversampling data had the best classifier prediction performance than undersampling data. The area under curve (AUC) and out-of-bag (OOB) error with IR = 1 reached 0.914 and 0.0787, which showed the better performance of the random forest algorithm using ProWSyn in dealing with imbalanced traffic violation data.


Language: en

Keywords

Automated Enforcement System; Imbalance Ratio; Random Forest; Traffic Violation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print