SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Santos GR, Chiari LPA, da Silva AP, Lipinski CF, Oliveira AA, Honorio KM, de Sousa AG, da Silva ABF. J. Mol. Model. 2021; 27(10): 297.

Copyright

(Copyright © 2021, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00894-021-04906-x

PMID

unavailable

Abstract

Depression affects more than 300 million people around the world and can lead to suicide. About 30% of patients on treatment for depression drop out of therapy due to side effects or to latency time associated to therapeutic effects. 5-HT receptor, known as serotonin, is considered the key in depression treatment. Arylpiperazine compounds are responsible for several pharmacological effects and are considered as ligands in serotonin receptors, such as the subtype 5-HT(2a). Here, in silico studies were developed using partial least squares (PLSs) and artificial neural networks (ANNs) to design new arylpiperazine compounds that could interact with the 5-HT(2a) receptor. First, molecular and electronic descriptors were calculated and posteriorly selected from correlation matrixes and genetic algorithm (GA). Then, the selected descriptors were used to construct PLS and ANN models that showed to be robust and predictive. Lastly, new arylpiperazine compounds were designed and their biological activity values were predicted by both PLS and ANN models. It is worth to highlight compounds G5 and G7 (predicted by the PLS model) and G3 and G15 (predicted by the ANN model), whose predicted pIC(50) values were as high as the three highest values from the arylpiperazine original set studied here. Therefore, it can be asserted that the two models (PLS and ANN) proposed in this work are promising for the prediction of the biological activity of new arylpiperazine compounds and may significantly contribute to the design of new drugs for the treatment of depression.


Language: en

Keywords

Depression; 5-HT2a receptor; ANN; Drug design; PLS

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print