SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pang L, Hu Q, Jin M, Yang K. Adv. Civil Eng. 2021; 2021: e6671875.

Copyright

(Copyright © 2021, Hindawi Publishing)

DOI

10.1155/2021/6671875

PMID

unavailable

Abstract

The process of gas explosion venting in a typical Chinese civil kitchen was investigated using computational fluid dynamics technology, focusing on the impact of the scale and cross-sectional characteristics of congestion, such as common furniture and electrical appliances, on the explosion flow-field parameters. An asymmetrical distribution of congestion will cause the uneven combustion of explosion flames in the kitchen. The flame will initially spread on one side of the room and then accelerate toward the surrounding areas, thereby increasing the risk of indoor gas explosion. The typical indoor overpressure change process can be divided into five stages, among which Stage V is found to be related to pseudoclosed combustion. Large-scale congestion has an obstructive effect on the explosion flow field, but it changes under certain conditions, while small-scale congestion only acts as a promoter. The flat congestion cross section helps maintain the stability of the flame structure, whereas the continuous and abrupt change of the congestion cross section can induce strong turbulent combustion. The research results provide a theoretical basis for the prevention and control of natural gas explosion hazards in civil kitchens from the perspective of congestion scale and cross-sectional mutation.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print