SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Desta R, Tesfaye D, Tóth J. Adv. Civil Eng. 2021; 2021: e5574848.

Copyright

(Copyright © 2021, Hindawi Publishing)

DOI

10.1155/2021/5574848

PMID

unavailable

Abstract

The movement of the light rail vehicles (LRVs) is highly interrupted at level crossings during peak hour times, especially when the intersections are not regulated by a coordinated signal system. Traffic modelling ensures better understanding and interpretation of complex traffic interactions. This study is aimed at modelling light rail transit (LRT) system operational characteristics at level crossings in Addis Ababa City using VISSIM software. The studied scenarios at Sebategna (All Way Stop Controlled, AWSC) and CMC (Roundabout) level crossings are the baseline without LRT scenario, the actual scenario with collected LRV headways, twice arrival frequency scenario, signalized actual LRV arrival, and signalized twice actual LRV arrival. The relative comparisons among the tested scenarios depicted that significant travel time savings can be achieved in some approaches if more green time is offered to nonconflicting phases during a light rail crossing. Overall, the average additional delays at level crossings increase from the base scenario with increasing light rail crossing frequencies, and delay at the level crossing is the second important variable that contributes to the variability of train travel time at peak hours. If it is a must for an intersection to have a rail road to pass through the median, different options should be verified based on the trade-off between the operational cost of the level crossing and the cost incurred if it is grade separated.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print