SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kaltsatou A, Notley SR, Flouris AD, Kenny GP. J. Occup. Env. Hyg. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Informa - Taylor and Francis Group)

DOI

10.1080/15459624.2021.1954187

PMID

unavailable

Abstract

Workers in the electric power industry commonly perform physically demanding jobs in hot environments, which combined with the protective clothing worn, places them at risk of disease and health problems related to occupational heat stress. With climate change fueling an increase in the occurrence of hot weather, a targeted approach to heat stress management within the industry is needed. To better understand current heat management practices and identify opportunities for refinement, we conducted an exploratory survey among 33 electric utility companies operating in the United States (nā€‰=ā€‰32) and Canada (nā€‰=ā€‰1). Forty-six employees responsible for health and safety of company workers completed 26 questions assessing heat stress as a workplace hazard and heat management practices within five categories: (1) use and administration of heat stress management program; (2) surveillance of heat stress and heat strain; (3) job evaluation and heat-mitigation guidance; (4) education and training programs; and (5) treatment of heat-related illness. While a majority of the respondents (87.0%) indicated heat stress is a workplace hazard and their organization has a heat stress management program (78.3%), less than half reported performing real-time monitoring of heat stress in the workplace (47.8%) or tracking worker heat strain (19.6%) (i.e., physiological response to heat stress). However, most organizations indicated they conducted pre-job evaluations for heat stress (71.7%) and implemented an employee training program on managing heat stress (73.9%). The latter included instruction on various short- and long-term heat-mitigation guidance for workers (e.g., use of work exposure limits, hydration protocols) and the prevention (52.2%) and treatment (63.1%) of heat-related illnesses. Altogether, our survey demonstrates that although many companies employ some form of a heat management program, the basic components defining the programs vary and are lacking for some companies. To maximize worker health and safety during work in hot environments, a consensus-based approach, which considers the five basic components of a heat management program, should be employed to formulate effective practices and methodologies for creating an industry-specific heat management strategy.


Language: en

Keywords

Climate change; heat hazard; occupational heat stress; worker

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print