SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Saha D, Dumbaugh E. J. Transp. Saf. Secur. 2022; 14(8): 1419-1450.

Copyright

(Copyright © 2022, Southeastern Transportation Center, and Beijing Jiaotong University, Publisher Informa - Taylor and Francis Group)

DOI

10.1080/19439962.2021.1958036

PMID

unavailable

Abstract

This paper presents a study that evaluates the nature of the associations (i.e., linear or non-linear) between built environment variables and pedestrian crash frequency at the census block group level. A machine learning approach, called the componentwise model-based gradient boosting algorithm, was implemented to estimate the nature and effects of sociodemographic, land use, road network, and traffic attributes on pedestrian crashes from Broward and Miami-Dade Counties in Florida. The algorithm provides the flexibility to use different types of base-learners, including but not limited to decision tree (DT), generalized additive model (GAM), and Markov Random Field (MRF). While gradient boosting with DT base-learner has widely been used in safety studies, other base-learners and their performances in crash frequency predictions are yet to be explored. This study compared the performance of DT and GAM base-learners, with an MRF base-learner to account for spatial correlation among analysis units. Models fitted with GAM base-learner were found to perform better than the models fitted with DT base-learner, with several variables showing non-linear and several showing linear or approximately linear correlations with pedestrian crash frequency. The study provides useful insights on how the results can help urban planners and policy makers to optimize pedestrian safety measures.


Language: en

Keywords

built environment; decision tree; generalized additive model; Pedestrian safety; spatial correlation; variable importance

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print