SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li C, Hu Z, Lu Z, Wen X. Sensors (Basel) 2021; 21(15): e5003.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21155003

PMID

unavailable

Abstract

The emerging connected and automated vehicle (CAV) has the potential to improve traffic efficiency and safety. With the cooperation between vehicles and intersection, CAVs can adjust speed and form platoons to pass the intersection faster. However, perceptual errors may occur due to external conditions of vehicle sensors. Meanwhile, CAVs and conventional vehicles will coexist in the near future and imprecise perception needs to be tolerated in exchange for mobility. In this paper, we present a simulation model to capture the effect of vehicle perceptual error and time headway to the traffic performance at cooperative intersection, where the intelligent driver model (IDM) is extended by the Ornstein-Uhlenbeck process to describe the perceptual error dynamically. Then, we introduce the longitudinal control model to determine vehicle dynamics and role switching to form platoons and reduce frequent deceleration. Furthermore, to realize accurate perception and improve safety, we propose a data fusion scheme in which the Differential Global Positioning system (DGPS) data interpolates sensor data by the Kalman filter. Finally, a comprehensive study is presented on how the perceptual error and time headway affect crash, energy consumption as well as congestion at cooperative intersections in partially connected and automated traffic. The simulation results show the trade-off between the traffic efficiency and safety for which the number of accidents is reduced with larger vehicle intervals, but excessive time headway may result in low traffic efficiency and energy conversion. In addition, compared with an on-board sensor independently perception scheme, our proposed data fusion scheme improves the overall traffic flow, congestion time, and passenger comfort as well as energy efficiency under various CAV penetration rates.


Language: en

Keywords

Humans; Safety; Accidents, Traffic; Computer Simulation; *Automobile Driving; connected and automated vehicles; perceptual error; signalized intersection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print