SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oh SJ, Kim DK. Cyberpsychol. Behav. Soc. Netw. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Mary Ann Liebert Publishers)

DOI

10.1089/cyber.2020.0613

PMID

unavailable

Abstract

This study aims to classify cybersickness (CS) caused by virtual reality (VR) immersion through a machine-deep-ensemble learning model. The heart rate variability and respiratory signal parameters of 20 subjects were measured, while watching a VR video for ∼5 minutes. After the experiment, the subjects were examined for CS and questioned to determine their CS states. Based on the results, we constructed a machine-deep-ensemble learning model that could identify and classify VR immersion CS among subjects. The ensemble model comprised four stacked machine learning models (support vector machine [SVM], k-nearest neighbor [KNN], random forest, and AdaBoost), which were used to derive prediction data, and then, classified the prediction data using a convolution neural network. This model was a multiclass classification model, allowing us to classify subjects' CS into three states (neutral, non-CS, and CS). The accuracy of SVM, KNN, random forest, and AdaBoost was 94.23 percent, 92.44 percent, 93.20 percent, and 90.33 percent, respectively, and the ensemble model could classify the three states with an accuracy of 96.48 percent. This implied that the ensemble model has a higher classification performance than when each model is used individually. Our results confirm that CS caused by VR immersion can be detected as physiological signal data with high accuracy. Moreover, our proposed model can determine the presence or absence of CS as well as the neutral state.

Clinical Trial Registration Number: 20-2021-1.


Language: en

Keywords

cybersickness; ensemble learning; physiological signal; virtual reality

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print