SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zheng Y, Lu Y, Jie Y, Fu S. Aerosp. Med. Hum. Perform. 2017; 88(5): pp 481-486.

Copyright

(Copyright © 2017, Aerospace Medical Association)

DOI

unavailable

PMID

unavailable

Abstract

The minimum flight crew on the flight deck should be established according to the workload for individual crewmembers. Typical workload measures consist of three types: subjective rating scale, task performance, and psychophysiological measures. However, all these measures have their own limitations. To reflect flight crew workload more specifically and comprehensively within the flight environment, and more directly comply with airworthiness regulations, the Workload Function Distribution Method, which combined the basic six workload functions, was proposed. The analysis was based on the different conditions of workload function numbers. Each condition was analyzed from two aspects, which were overall proportion and effective proportion. Three types of approach tasks were used in this study and the NASA-TLX scale was implemented for comparison. Neither the one-function condition nor the two-function condition had the same results with NASA-TLX. However, both the three-function and the four- to six- function conditions were identical with NASA-TLX. Further, the significant differences were different on four to six conditions. The overall proportion was insignificant, while the effective proportions were significant. The results show that the conditions with one function and two functions seemed to have no influence on workload, while executing three functions and four to six functions had an impact on workload. Besides, effective proportions of workload functions were more precisely compared with the overall proportions to indicate workload, especially in the conditions with multiple functions.

Keywords

Multitasking; Stress (Physiology); Workload; Aviation safety; Airworthiness; Flight crews; Physiology; Task analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print