SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang Y, Gao L, Ni A, Liu X. J. Transp. Geogr. 2021; 93: 103070.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.jtrangeo.2021.103070

PMID

unavailable

Abstract

As the propensity to link multiple intermediate stops in a trip chain (a sequence of journeys that starts and ends at home, includes visiting one or more locations) is more prevalent, the relationship between travel mode choice and trip chain pattern aroused the attention of academics. This paper examines two distinct structures to identify the decision process of travelers between travel mode choice and trip chain pattern: one structure in which trip chain pattern organization precedes travel mode choice, another structure in which travel mode choice decision precedes the organization of trip chain pattern. To accommodate multi-day behavioral variability and unobserved heterogeneity in personal characteristics ignored by traditional travel surveys, multi-day GPS data collected in Shanghai is employed to estimate these two structures within Nested Logit (NL) model. The Monte Carlo (MC) method simulates the switch of trip-chaining and mode choice under possible Transportation Demand Management (TDM) strategies based on estimation results. The findings of this study are as follows: (1) trip chain pattern decision precedes travel mode choice, which means trip-chaining is organized first and affects travel mode choice; (2) complex trip chain is related to higher automobile dependency, and it is a barrier to the tendency to adopt public transit; (3) people who generally travel by automobiles might switch to public transit when private cars are unavailable, and an increase in household bicycle ownership enhances competition between the bicycle and public transit which leads people to turn to cycling. These findings help implement TDM strategies to develop sustainable transportation systems and optimize the urban trip structure.


Language: en

Keywords

Monte Carlo (MC) method; Multi-day GPS data; Nested Logit (NL) model; Transportation Demand Management (TDM) strategies; Travel mode choice; Trip chain pattern

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print