SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gyemi DL, Andrews DM, Jadischke R. J. Biomech. 2021; 125: e110587.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.jbiomech.2021.110587

PMID

unavailable

Abstract

This study presents a video analysis of helmet-to-ground impacts in youth American football (≤14 years). A total of 21 non-injurious helmet-to-ground impact cases were assessed from game video of two age divisions (9-12 years: n = 9; 13-14 years: n = 12) using a novel multi-camera videogrammetry approach. Descriptive parameters related to the game situation and impact mechanisms were documented. Motion analysis software was used to manually track and compute three-dimensional helmet kinematics and uncertainty of the motion tracking analysis was assessed. Overall, the impact cases primarily followed a body-to-body, body-to-ground, helmet-to-ground contact progression. Impact locations on the helmet were mostly distributed across the rear and side helmet shell. The resultant pre-impact velocities for these cases averaged 4.04 ± 1.24 m/s at an angle of -49.6° to the ground. The average resultant impact-induced change in helmet velocity was 3.32 ± 1.14 m/s; the time interval associated with the duration of helmet-to-ground contact was approximately 0.06 s. The average maximum uncertainty (±) error of the position coordinates from the helmet tracking was 1.5 ± 0.3 cm. In summary, this video-based methodology can effectively be used to quantify helmet impact velocities and locations in youth football games. To date, the acquisition of such information has largely been limited to professional football game footage. Therefore, the data reported here may help inform the development of more representative assessment methods for youth-specific helmet test standards.


Language: en

Keywords

Helmets; Youth; Biomechanics; Football; Head Impacts

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print