SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hughes JM, O'Leary TJ, Koltun KJ, Greeves JP. Eur. J. Sport Sci. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Informa - Taylor and Francis Group)

DOI

10.1080/17461391.2021.1949637

PMID

unavailable

Abstract

Mechanical loading leads to adaptive bone formation - the formation of new bone on existing skeletal surfaces - which increases bone strength and fatigue resistance. The same mechanical loading can also cause microdamage to bone and development of a stress fracture through targeted remodelling. Stress fractures are common in military recruits and cause significant morbidity, lost training time, and discharge from military service. This narrative review proposes strategies to promote adaptive bone formation as a novel approach to mitigate the risk of stress fracture injuries during arduous military training. Exercise that is unaccustomed, dynamic, high-impact, multidirectional, intermittent, and includes extended rest periods to restore bone mechanosensitivity, is most osteogenic. New bone formation can take up to one year to mineralize, and so new exercise training programmes should be initiated well in advance of military activities with high risk of stress fracture. Bone mechanosensitivity is highest in adolescence, before puberty, and so increasing physical activity in youth is likely to protect skeletal health in later life, including for those in the military. Recent data show that adaptive bone formation takes place during initial military training. Adaptive bone formation can also be supported with adequate sleep, vitamin D, calcium, and energy availability. Further evidence on how strategies to promote adaptive bone formation affect stress fracture risk are required. Adaptive bone formation can be optimized with a range of training and nutritional strategies to help create a resilient skeleton, which may protect against stress fracture throughout military service.


Language: en

Keywords

Exercise; Bone health; Musculoskeletal

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print