SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

de Lange J, Quenneville C. J. Biomech. Eng. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, American Society of Mechanical Engineers)

DOI

10.1115/1.4051783

PMID

unavailable

Abstract

Foot injuries as a result of automotive collisions are frequent and impactful. Anthropomorphic Test Devices (ATDs), used to assess injury risk during impact scenarios such as motor vehicle collisions, typically assess risk of foot/ankle injuries by analyzing data in tibia load cells. The peak axial force (Fz) and the Tibia Index (TI) are metrics commonly used to evaluate risk of injury to the lower extremity but do not directly account for injury risk to the foot, or the risk of injury associated with out-of-position loading. Two ATDs, the Hybrid III lower leg and the Military Lower Extremity (MIL-Lx), were exposed to axial impacts at seven different ankle postures. An array of piezoresistive sensors located on the insole of a boot was employed during these tests to assess the load distribution variations among postures and between ATD models on the plantar surface of the foot. Both posture and ATD model affected the load distribution on the foot, highlighting the need for regional injury risk assessments in this vulnerable anatomical region. The increase in forefoot loading during plantarflexion was not reflected in the standard industry metrics of Fz or TI, suggesting that increased fracture risk to the forefoot would not be detected. The variations in load distribution between the models could also alter injury risk assessment in frontal collisions based on differences in attenuation. These data could be used for regional foot injury assessment and to inform the design of an improved ATD foot.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print