SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao J, Liu P, Xu C, Bao J. Accid. Anal. Prev. 2021; 159: e106293.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.aap.2021.106293

PMID

unavailable

Abstract

The primary objective of this study was to evaluate the impacts of traffic states on crash risk in the vicinities of Type A weaving segments. A deep convolutional embedded clustering (DCEC) was developed to classify traffic flow into nine states. The proposed DCEC outperformed the three common clustering algorithms, i.e. K-means, deep embedded clustering, and deep convolutional autoencoders clustering, in terms of silhouette coefficient and calinski-harabaz index on the same samples, suggesting that the DCEC provides better clustering performance. The characteristics of the nine traffic states are described for the right and inside lanes separately. The DCED visualization indicates that the spatiotemporal features of the nine traffic states are different from each other. The empirical analyses suggest that crash severity and the main types of crashes are different across the nine traffic states. The results of the logistic regression model prove that the nine traffic states are significantly associated with crash risk in the vicinities of weaving segments, and each traffic state can be assigned with a unique safety level. The convolutional neural network with gated convolutional layers (G-CNN) was developed to predict the crash risk in each traffic state. Compared with the traditional four traffic states classification based on 4-phase traffic theory, the model incorporating the various crash mechanisms across the nine traffic states provides more accurate predictions.


Language: en

Keywords

Deep learning; Crash risk; Traffic states; Weaving segments

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print