SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shearston JA, Martinez ME, Nunez Y, Hilpert M. Sci. Total Environ. 2021; 792: e148336.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2021.148336

PMID

unavailable

Abstract

INTRODUCTION: To mitigate the COVID-19 pandemic and prevent overwhelming the healthcare system, social-distancing policies such as school closure, stay-at-home orders, and indoor dining closure have been utilized worldwide. These policies function by reducing the rate of close contact within populations and result in decreased human mobility. Adherence to social distancing can substantially reduce disease spread. Thus, quantifying human mobility and social-distancing compliance, especially at high temporal resolution, can provide great insight into the impact of social distancing policies.

METHODS: We used the movement of individuals around New York City (NYC), measured via traffic levels, as a proxy for human mobility and the impact of social-distancing policies (i.e., work from home policies, school closure, indoor dining closure etc.). By data mining Google traffic in real-time, and applying image processing, we derived high resolution time series of traffic in NYC. We used time series decomposition and generalized additive models to quantify changes in rush hour/non-rush hour, and weekday/weekend traffic, pre-pandemic and following the roll-out of multiple social distancing interventions.

RESULTS: Mobility decreased sharply on March 14, 2020 following declaration of the pandemic. However, levels began rebounding by approximately April 13, almost 2 months before stay-at-home orders were lifted, indicating premature increase in mobility, which we term social-distancing fatigue. We also observed large impacts on diurnal traffic congestion, such that the pre-pandemic bi-modal weekday congestion representing morning and evening rush hour was dramatically altered. By September, traffic congestion rebounded to approximately 75% of pre-pandemic levels.

CONCLUSION: Using crowd-sourced traffic congestion data, we described changes in mobility in Manhattan, NYC, during the COVID-19 pandemic. These data can be used to inform human mobility changes during the current pandemic, in planning for responses to future pandemics, and in understanding the potential impact of large-scale traffic interventions such as congestion pricing policies.


Language: en

Keywords

COVID-19; SARS-CoV-2; smartphone; coronavirus pandemic; crowd-sourced data; digital epidemiology; Google maps; Google traffic; human mobility; New York; NYC; social-distancing fatigue; Traffic maps

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print