SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Faccincani R, Trucco P, Nocetti C, Carlucci M, Weinstein ES. Disaster Med. Public Health Prep. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Society for Disaster Medicine and Public Health, Publisher Cambridge University Press)

DOI

10.1017/dmp.2021.113

PMID

unavailable

Abstract

BACKGROUND: Hospitals are expected to operate at a high performance level even under exceptional conditions of peak demand and resource disruptions. This understanding is not mature yet and there are wide areas of possible improvement. In particular, the fast mobilization and reconfiguration of resources frequently result into the severe disruption of elective activities, worsening the quality of care. This becomes particularly evident during the on-going coronavirus disease 2019 (COVID-19) pandemic. More resilient resource allocation strategies, that is, which adapt to the dynamics of the prevailing circumstance, are needed to maximize the effectiveness of health-care delivery. In this study, a simulation approach was adopted to assess and compare different hospital's adaptive resource allocation strategies in responding to a sudden onset disaster mass casualty incident (MCI).

METHODS: A specific set of performance metrics was developed to take into consideration multiple objectives and priorities and holistically assess the effectiveness of health-care delivery when coping with an MCI event. Discrete event simulation (DES) and system dynamics (SD) were used to model the key hospital processes and the MCI plan.

RESULTS: In the daytime scenario, during the recovery phase of the disaster, a gradual disengagement of resources from the emergency department (ED) to restart ordinary activities in operating rooms and wards returned the best performance. In the night scenario, the absorption capacity of the ED was evaluated by identifying the current bottleneck and assessment of the benefit of different resource mobilization strategies.

CONCLUSIONS: The present study offers a robust approach, effective strategies and new insights to design more resilient plans to cope with MCIs. It becomes particularly relevant when considering the risk of indirect damage of emergencies, where all the available resources are shifted from the care of the ordinary to the "disaster" patients, like during the on-going COVID-19 pandemic. Future research is needed to widen the scope of the analysis and take into consideration additional resilience capacities such as operational coordination mechanisms among multiple hospitals in the same geographic area.


Language: en

Keywords

resilience; simulation; mass casualty incident(MCI); resource allocation strategies; surge capacity

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print