SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wiernik BM, Wilmot MP, Kostal JW. Ind. Organ. Psychol. 2015; 8(3): 438-445.

Copyright

(Copyright © 2015, Society for Industrial and Organizational Psychology, Publisher Cambridge University Press)

DOI

10.1017/iop.2015.60

PMID

unavailable

Abstract

A dominant general factor (DGF) is present when a single factor accounts for the majority of reliable variance across a set of measures (Ree, Carretta, & Teachout, 2015). In the presence of a DGF, dimension scores necessarily reflect a blend of both general and specific factors. For some constructs, specific factors contain little unique reliable variance after controlling for the general factor (Reise, 2012), whereas for others, specific factors contribute a more substantial proportion of variance (e.g., Kinicki, McKee-Ryan, Schriesheim, & Carson, 2002). We agree with Ree et al. that the presence of a DGF has implications for interpreting scores. However, we argue that the conflation of general and specific factor variances has the strongest implications for understanding how constructs relate to external variables. When dimension scales contain substantial general and specific factor variance, traditional methods of data analysis will produce ambiguous or even misleading results. In this commentary, we show how several common data analytic methods, when used with data sets containing a DGF, will substantively alter conclusions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print