SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gannon BM, Wei Y, Thompson MP, Scott JH, Short KC. Risk Anal. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Society for Risk Analysis, Publisher John Wiley and Sons)

DOI

10.1111/risa.13762

PMID

unavailable

Abstract

Water supply impairment from increased contaminant mobilization and transport after wildfire is a major concern for communities that rely on surface water from fire-prone watersheds. In this article we present a Monte Carlo simulation method to quantify the likelihood of wildfire impairing water supplies by combining stochastic representations of annual wildfire and rainfall activity. Water quality impairment was evaluated in terms of turbidity limits for treatment by modeling wildfire burn severity, postfire erosion, sediment transport, and suspended sediment dilution in receiving waterbodies. Water supply disruption was analyzed at the system level based on the impairment status of water supply components and their contributions to system performance. We used this approach to assess wildfire-water supply impairment and disruption risks for a system of water supply reservoirs and diversions in the Front Range Mountains of Colorado, USA. Our results indicate that wildfire may impair water quality in a concerning 15.7-19.4% of years for diversions from large watersheds. Reservoir impairment should be rare for off-network reservoirs-ranging from at most 0.01% of years for large reservoirs to nearly 2% of years for small reservoirs. System redundancy meaningfully reduced disruption risk for alternative conveyance routes (4.3-25.0% reduction) and almost eliminated disruption risk for a pair of substitutable terminal sources (99.9% reduction). In contrast, dependency among reservoirs on a conveyance route nearly doubled risk of disruption. Our results highlight the importance of considering water system characteristics when evaluating wildfire-water supply risks.


Language: en

Keywords

System analysis; water supply impairment; wildfire risk

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print