SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wei R, Xu H, Yang M, Yu X, Xiao Z, Yan B. Sensors (Basel) 2021; 21(11).

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21113808

PMID

unavailable

Abstract

In the field of pedestrian dead reckoning (PDR), the zero velocity update (ZUPT) method with an inertial measurement unit (IMU) is a mature technology to calibrate dead reckoning. However, due to the complex walking modes of different individuals, it is essential and challenging to determine the ZUPT conditions, which has a direct and significant influence on the tracking accuracy. In this research, we adopted an adaptive zero velocity update (AZUPT) method based on convolution neural networks to classify the ZUPT conditions. The AZUPT model was robust regardless of the different motion types of various individuals. AZUPT was then implemented on the Zynq-7000 SoC platform to work in real time to validate its computational efficiency and performance superiority. Extensive real-world experiments were conducted by 60 different individuals in three different scenarios. It was demonstrated that the proposed system could work equally well in different environments, making it portable for PDR to be widely performed in various real-world situations.


Language: en

Keywords

CNN; pedestrian dead reckoning; PYNQ; real-time terminal; zero velocity update

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print