SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shi T, Zhong D, Bi L. Sensors (Basel) 2021; 21(10).

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21103548

PMID

unavailable

Abstract

In transportation at open-pit mines, rocks dropped as a mining truck is driven will wear out the tires of the vehicle, thus increasing the mining cost. In the case of autonomous vehicles, the vehicle must automatically detect rocks on the transportation roads during the driving process. This will be a new challenge: rough road, rocks of small size and irregular shape, long detection distance, etc. This paper presents a detection method based on light detection and ranging (lidar). It includes two stages: (1) using the modified cloth simulation method to filter out the ground points; (2) using the regional growth method based on grid division to cluster non-ground points. Experimental results show that the method can detect rocks with a size of 20-30 cm at a distance of 40 m in front of the vehicle, and it takes only 0.3 s on an ordinary personal computer (PC). This method is easy to understand, and it has fewer parameters to be adjusted. Therefore, it is a better method for detecting small, irregular obstacles on a low-speed, unstructured and rough road.


Language: en

Keywords

autonomous vehicle; cloth simulation; intelligent mining; lidar point cloud; obstacle detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print