SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rahman EU, Khan MA, Algarni F, Zhang Y, Irfan Uddin M, Ullah I, Ahmad HI. Math. Probl. Eng. 2021; 2021: e9977939.

Copyright

(Copyright © 2021, Hindawi Publishing)

DOI

10.1155/2021/9977939

PMID

unavailable

Abstract

This paper presents a new methodology based on texture and color for the detection and monitoring of different sources of forest fire smoke using unmanned aerial vehicles (UAVs). A novel dataset has been gathered comprised of thin smoke and dense smoke generated from the dry leaves on the floor of the forest, which is a source of igniting forest fires. A classification task has been done by training a feature extractor to check the feasibility of the proposed dataset. A meta-architecture is trained above the feature extractor to check the dataset viability for smoke detection and tracking.

RESULTS have been obtained by implementing the proposed methodology on forest fire smoke images, smoke videos taken on a stand by the camera, and real-time UAV footages. A microaverage F1-score of 0.865 has been achieved with different test videos. An F1-score of 0.870 has been achieved on real UAV footage of wildfire smoke. The structural similarity index has been used to show some of the difficulties encountered in smoke detection, along with examples.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print