SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vu NK, Nguyen HQ. Math. Probl. Eng. 2021; 2021: e6693807.

Copyright

(Copyright © 2021, Hindawi Publishing)

DOI

10.1155/2021/6693807

PMID

unavailable

Abstract

When there is no driver, balancing the two-wheel vehicle is a challenging but fascinating problem. There are various solutions for maintaining the balance of a two-wheel vehicle. This article presents a solution for balancing a two-wheel vehicle using a flywheel according to the inverted pendulum principle. Since uncertainties influence the actual operating environment of the vehicle, we have designed a robust controller RH∞ to maintain the vehicle equilibrium. Robust controllers often have a high order that can affect the actual control performance; therefore, order reduction algorithms are proposed. Using Matlab/Simulink, we compared the performance of the control system with different reduced-order controllers to choose a suitable low-order controller. Finally, experimental results using a low-order robust controller show that the vehicle balances steadily in different scenarios: no-load, variable load, stationary, and moving.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print