SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Najafi Moghaddam Gilani V, Hosseinian SM, Ghasedi M, Nikookar M. Math. Probl. Eng. 2021; 2021: e9974219.

Copyright

(Copyright © 2021, Hindawi Publishing)

DOI

10.1155/2021/9974219

PMID

unavailable

Abstract

Modeling the severity of accidents based on the most effective variables accounts for developing a high-precision model presenting the possibility of occurrence of each category of future accidents, and it could be utilized to prioritize the corrective measures for authorities. The purpose of this study is to identify the variables affecting the severity of the injury, fatal, and property damage only (PDO) accidents in Rasht city by collecting information on urban accidents from March 2019 to March 2020. In this regard, the multiple logistic regression and the pattern recognition type of artificial neural network (ANN) as a machine learning solution are used to recognize the most influential variables on the severity of accidents and the superior approach for accident prediction.

RESULTS show that the multiple logistic regression in the forward stepwise method has R2 of 0.854 and an accuracy prediction power of 89.17%. It turns out that the accidents occurred between 18 and 24 and KIA Pride vehicle has the highest effect on increasing the severity of accidents, respectively. The most important result of the logit model accentuates the role of environmental variables, including poor lighting conditions alongside unfavorable weather and the dominant role of unsafe and poor quality of vehicles on increasing the severity of accidents. In addition, the machine learning model performs significantly better and has higher prediction accuracy (98.9%) than the logit model. In addition, the ANN model's greater power to predict and estimate future accidents is confirmed through performance and sensitivity analysis.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print